Rigid-Flex PCB is From Concept to Qualified Production: An Engineering Playbook for Space-Saving, High-Reliability Interconnects

rigid flex pcb | rigid flex pcb manufacturer | rigid flex pcb fabrication | rigid flex pcb cost | rigid flex pcb manufacturer china | Rigid flex pcb manufacturer china price

Rigid-Flex in Context — Why It Exists

Traditional “rigid + cable” architectures add weight, volume, and four or more solder joints per interconnect. Rigid-flex PCBs combine copper-clad polyimide flex zones with FR-4 rigid islands inside the same laminated structure, so signals flow across bends without plugs, headers, or harnesses. The result:

Metric Cable + Rigid Rigid-Flex
Interconnect joints ≥ 4 per link 0
Assembly steps Board A → Cable → Board B → Screws Single SMT reflow
Z-height ≥ 11 mm (header stack) ≤ 1.0 mm folded
Dynamic bend life N/A > 1 000 000 cycles (RA Cu + PI 25 µm)
Field failure points Connector, harness, cold-joint Flex hinge only (tested)

Support All Types of PCB Fabrication

Biggest PCB Manufacturers
rigid flex pcb | rigid flex pcb manufacturer | rigid flex pcb fabrication | rigid flex pcb cost | rigid flex pcb manufacturer china | Rigid flex pcb manufacturer china price

IPC-6013 / 2223 Rigid-Flex Types (Quick Reference)

Type Rigid Layers Flex Layers Flex Exposed? Typical Use
Type 1 1 rigid 1 flex Yes (outer) Camera hinges, wearables
Type 2 ≥ 2 rigid 1 flex Yes Folded consumer boards
Type 3 1–N rigid 2 flex (separate) Yes Dynamic cabling replacement
Type 4 ≥ 2 rigid ≥ 2 flex (sandwiched) No (internal) Military, space, HDD heads

HighPCB regularly builds Type 2 / 3 for IoT & medical and Type 4, Class 3 for aerospace.

Material Toolbox

Zone Preferred Material Key Characteristics
Flex core Adhesiveless polyimide 25–50 µm Dk 3.4, Df 0.008 @ 1 GHz; no acrylic flow
Flex copper Rolled-annealed (RA) 12/18 µm Grain-longitudinal ⇒ < 0.3 % elongation
Bondply (rigid-flex glue) No-flow FR-4 106 prepreg or Flex-bond epoxy Tg ≥ 170 °C, flow 60–90 µm
Rigid core FR-4 Tg 170–200 °C or halogen-free CTE-Z < 55 ppm/°C
Coverlay PI 12.5 µm + epoxy adhesive 12.5 µm Laser-defined openings, ±50 µm
Stiffener (opt.) 0.2–0.5 mm FR-4, Al 5052, SUS304 Stabilises µ-BGA / press-fit pins

Impedance note: RA copper + adhesiveless PI keeps Df low enough for 10 Gb/s lanes over 150 mm flex.

Stack-Up Examples (Top-Down)

Example A – Type 2, 6-Layer Smartphone Fold Hinge

ENEPIG finish

Solder mask LPI        (rigid)

Cu 35 µm  — Signal 1

FR-4 Tg 180 °C 0.10 mm

Cu 18 µm  — GND Plane

No-flow 1080 PP 0.08 mm

Cu 18 µm  — Flex stripline 1  ← exposed

PI core 25 µm

Cu 18 µm  — Flex stripline 2  ← exposed

No-flow 1080 PP 0.08 mm

Cu 18 µm  — GND Plane

FR-4 Tg 180 °C 0.10 mm

Cu 35 µm  — Signal 2

LPI mask

Bend radius safe: 0.25 mm PI × 10 = 2.5 mm dynamic.

Example B – Type 4, 12-Layer Satellite Transceiver, IPC Class 3A

Three sequential laminations, stacked microvia core-fill, inner flex fully buried for EMI.

Process Flow – Detailed Controls & Metrology

# Process Control Spec Metrology
1 Flex core etch 12 µm RA Cu, SAP ±10 µm Coupon AOI
2 Coverlay lam. 190 °C, 1.7 MPa, 60 min Cross-section void < 1 %
3 Rigid drilling 0.10 mm UV-laser, 0.20 mm Mech IPC-T-50 Δpos ±25 µm
4 Desmear Plasma O₂/CF₄ 60 s → KMnO₄ bath No smear @ 200× optical
5 Cu plate & via-fill 25 µm Cu, DC 2.0 A dm⁻² X-ray void < 5 %
6 Sequential lam 2/3 ±40 µm layer register 3-pin target + vision
7 Routing/laser skive Flex edge burr < 25 µm Stylus profilometer
8 Dynamic bend test 180° curl, R = 2 mm, 1 000 cycles IPC-TM-650 2.4.5A pass

Design Rule Matrix

Feature Min Value Notes
Line / space (rigid) 75 µm / 75 µm LDI; 50 µm special
Line / space (flex) 100 µm / 100 µm SAP 70 µm possible
PTH drill 0.20 mm 6:1 aspect recommended
Microvia (laser) 0.10 mm Stack ≤ 2 high
Distance rigid-flex seam → pad ≥ 0.50 mm Prevent solder wicking
Bend count dynamic > 1 000 000 @ R ≥ 10 × T RA Cu + adhesiveless PI
Differential imp. (90 Ω) PI 25 µm + Spacing 100 µm Outer copper 18 µm

Reliability & Test Suite

Test Std Typical Spec
IST (Interconnect Stress) IPC-TM-650 2.6.26 ΔR < 5 % after 250 cycles 25↔145 °C
Bend Fatigue IPC-6013 3.4.2 1 M cycles R=10T, no crack
Thermal Shock JESD22-A106 −55 °C/125 °C 500 cycles, no CAF
Moisture/Insulation IPC-TM-650 2.6.3.4 IR > 1 GΩ @ 85 °C/85 % RH
Solder Float IPC-TM-650 2.4.13 288 °C 10 s × 3, no delam

8 | Cost Model & Optimisation

Cost Driver Typical Impact Mitigation (DFM)
Sequential lam cycles +15 % per cycle Limit to 3 → combine flex pairs
Laser microvia count +US$ 5–7 /1000 vias Use dog-bone fan-out for 0.8 mm BGAs
Coverlay laser time +US$ 0.1 /cm² Gang openings under BGA array
Stiffener placement +US$ 30 /panel setup Only under fine-pitch BGAs
ENEPIG vs ENIG ×1.25 cost Use ENIG if no Al wire-bond required

End-to-End Assembly Considerations

  • Panel warpage after lam. < 0.70 mm per 150 mm diagonal → ensures stencil coplanarity.
  • Reflow profile: 2-zone; ramp 1.0 °C s⁻¹, peak 245 °C; cool < 3 °C s⁻¹ to avoid copper-grain fatigue.
  • Selective-solder fixture prevents masking compound from wicking under coverlay edge.
  • Conformal coat: parylene or acrylic; mask flex hinge region to maintain bend life.
  • Functional test: 100 % flying-probe → power-on flex while monitoring ΔR for latent crack.

Ordering Checklist

  1. 3-D mechanical drawing (STEP, *.dxf) with final fold radii.
  2. Gerber / ODB++ + netlist + IPC-356A test file.
  3. Stack-up table with material codes, copper weights, dielectric Dk/Df.
  4. Bend specification – static or dynamic, bend count target.
  5. Reliability class (IPC-6013 class 2 or 3, space addendum if needed).
  6. Surface finish, stiffener zones, shield plating, impedance targets.
  7. Assembly BOM + “no-stuff” flex zones highlighted.

Why HighPCB for Rigid-Flex?

Dedicated flex-rigid SMT line with vacuum hold-down, ±25 µm paste registration.

Stress-free lamination – 5-zone press with real-time pressure mapping.

0.5 mil LDI + 25 µm laser alignment for fine-pitch cameras & implants.

Certified to IPC-6013C, Class 3 and AS9100D + ISO 13485.

Full lifecycle support: design → fabrication → assembly → conformal coat → flying-probe + bend test → C of C & First Article.